Getting Started With ICU – Part II

Introduction

In Getting Started With ICU, Part I, we learned how to use ICU to do character set conversions and collation. In this paper we’ll learn how to use ICU to format messages, with examples in Java, and we’ll learn how to do text boundary analysis, with examples in C++.
Message Formatting

Message formatting is the process of assembling a message from parts, some of which are fixed and some of which are variable and supplied at runtime. For example, suppose we have an application that displays the locations of things that belong to various people. It might display the message “My Aunt’s pen is on the table.”, or “My Uncle’s briefcase is in his office.” To display this message in Java, we might write:
String person = …; // e.g. “My Aunt”

String place = …; // e.g. “on the table”
String thing = …; // e.g. “pen”
System.out.println(person + “’s “ + thing + “ is “ + place + “.”);

This will work fine if our application only has to work in English. If we want it to work in French too, we need to get the constant parts of the message from a language-dependent resource. Our output line might now look like this:

System.out.println(person + messagePossesive + thing + messageIs + place + “.”);

This will work for English, but will not work for French - even if we translate the constant parts of the message - because the word order in French is completely different. In French, one would say, “The pen of my Aunt is on the table.” We would have to write our output line like this to display the message in French:

System.out.println(thing + messagePossesive + person + messageIs + place + “.”);

Notice that in this French example the variable pieces of the message are in a different order. This means that just getting the fixed parts of the message from a resource isn’t enough. We also need something that tells us how to assemble the fixed and variable pieces into a sensible message.
MessageFormat
The ICU MessageFormat class does this by letting us specify a single string, called a pattern string, for the whole message. The pattern string contains special placeholders, called format elements, which show where to place the variable pieces of the message, and how to format them. The format elements are enclosed in curly braces. In this example, the format elements consist of a number, called an argument number, which identifies a particular variable piece of the message. In our example, argument 0 is the person, argument 1 is the place, and argument 2 is the thing.

For our English example above, the pattern string would be:

{0}''s {2} is {1}.

(Notice that the quote character appears twice. We'll say more about this later.)

For our French example, the pattern string would be:

{2} of {0} is {1}.
Here’s how we would use MessageFormat to display the message correctly in any language:

First, we get the pattern string from a resource bundle:

String pattern = resourceBundle.getString(“personPlaceThing”);

Then we create the MessageFormat object by passing the pattern string to the MessageFormat constructor:

MessageFormat msgFmt = new MessageFormat(pattern);

Next, we create an array of the arguments:

Object arguments[] = {person, place, thing);

Finally, we pass the array to the format() method to produce the final message:

String message = msgFmt.format(arguments);

That’s all there is to it! We can now display the message correctly in any language, with only a few more lines of code than we needed to display it in a single language.

Handling Different Data Types
In our example, all of the variable pieces of the message were strings. MessageFormat also lets us uses dates, times and numbers. To do that, we add a keyword, called a format type, to the format element. Examples of valid format types are “date” and “time”. For example:

String pattern = “On {0, date} at {0, time} there was {1}.”;
MessageFormat fmt = new MessageFormat(pattern);

Object args[] = {new Date(System.currentTimeMillis()), // 0
 “a power failure” // 1
 };

System.out.println(fmt.format(args));

This code will output a message that looks like this:

On Jul 17, 2004 at 2:15:08 PM there was a power failure.
Notice that the pattern string we used referenced argument 0, the date, once to format the date, and once to format the time. In pattern strings, we can reference each argument as often as we wish.

Format Styles
We can also add more detailed format information, called a format style, to the format element. The format style can be a keyword or a pattern string. (See below for details) For example:

String pattern = “On {0, date, full} at {0, time, full} there was {1}.”;

MessageFormat fmt = new MessageFormat(pattern);

Object args[] = {new Date(System.currentTimeMillis()), // 0
 “a power failure” // 1
 };

System.out.println(fmt.format(args));

This code will output a message that looks like this:

On Saturday, July 17, 2004 at 2:15:08 PM PDT there was a power failure.
The following table shows the valid format styles for each format type and a sample of the output produced by each combination:

	Format Type
	Format Style
	Sample Output

	number
	(none)
	123,456.789

	
	integer
	123,457

	
	currency
	$123,456.79

	
	percent
	12%

	date
	(none)
	Jul 17, 2004

	
	short
	7/17/04

	
	medium
	Jul 17, 2004

	
	long
	July 17, 2004

	
	full
	Saturday, July 17, 2004

	time
	(none)
	2:15:08 PM

	
	short
	2:15 PM

	
	medium
	2:14:08 PM

	
	long
	2:15:08 PM PDT

	
	full
	2:15:08 PM PDT

If the format element does not contain a format type, MessageFormat will format the arguments according to their types:

	Data Type
	Sample Output

	Number
	123,456.789

	Date
	7/17/04 2:15 PM

	String
	on the table

	others
	output of toSting() method

Choice Format
Suppose our application wants to display a message about the number of files in a given directory. Using what we’ve learned so far, we could create a pattern like this:
There are {1, number, integer} files in {0}.

The code to display the message would look like this:

String pattern = resourceBundle.getString(“fileCount”);

MessageFormat fmt = new MessageFormat(fileCountPattern);
String directoryName = … ;

Int fileCount = … ;
Object args[] = {directoryName, new Integer(fileCount)};

System.out.println(fmt.format(args));

This would output a message like this:

There are 1,234 files in myDirectory.

This message looks OK, but if there is only one file in the directory, the message will look like this:

There are 1 files in myDirectory.

In this case, the message is not grammatically correct because it uses plural forms for a single file. We can fix it by testing for the special case of one file and using a different message, but that won't work for all languages. For example, some languages have singular, dual and plural noun forms. For those languages, we'd need two special cases: one for one file, and another for two files. Instead, we can use something called a choice format to select one of a set of strings based on a numeric value. To use a choice format, we use “choice” for the format type, and a choice format pattern for the format style:

There {1, choice, 0#are no files|1#is one file|1<are {1, number, integer} files} in {0}.
Using this pattern with the same code, would produce output like this:

There are no files in thisDirectory.

There is one file in thatDirectory.

There are 1,234 files in myDirectory.

Let’s look at our choice format pattern in more detail. It says to use the string "are no files" if the file count is 0, to use the string "is one file" if the file count is 1, and to use the string "are {1, number, integer} files" if the file count is greater than 1. Notice that the last string contains a format element ("{1, number, integer}"). If any string selected by a choice format pattern contains a format element, MessageFormat will recursively process the format element.

A choice format pattern splits the real number line into two or more ranges. Each range is mapped to a string. The pattern consists of range specifiers separated by the vertical bar character (“|”). Each range specifier consists of a number followed by a separator character followed by a string. The number is any floating point number and specifies the lower limit of the range. The Unicode infinity sign ∞ (U+221E) can be used for positive infinity. It may be preceded by a minus sign to represent negative infinity. The separator indicates whether the lower limit of the range is inclusive or exclusive:
	Separator
	Lower Limit

	#
	inclusive

	≤
	inclusive

	<
	exclusive

(Notice that the separators ≤ (U+2264) and # are equivalent.)
If the lower limit is inclusive, the number is the lower limit of the range. If the limit value is exclusive, the number is the upper limit of the previous range. The upper limit of each range is just before the lower limit of the next range. The upper limit of the last range is positive infinity. Because the ranges must cover the entire real number line, the lower limit of the first range is always negative infinity, no matter what lower limit is in the pattern.
If the value falls within a particular range, it selects the string associated with that range
Looking again at the choice format pattern we used above, we see that the first range is [0..1), the second range is [1..1] and the third range is (1..∞]. (Because the choice format must cover the entire real number line, the first range is really [-∞..1).)

Important Details
Before we finish our discussion of MessageFormat, there are two details worth mentioning. The first is that special characters in the pattern, such as { and #, can be enclosed in single quote characters to remove their special meaning. To represent a singe quote, we need to use two consecutive single quotes. For example:
The '{' character, the '#' character and the '' character.

This is particularly important to remember if the pattern string uses a single quote for an apostrophe, as we did above in the pattern:
{0}''s {2} is {1}.

The other detail is that the format style can be a pattern string. If the format type is "number" we can use a DecimalFormat pattern string, and if the format type is "date" or "time" we can use a SimpleDateFormat pattern string. Consult the documentation for these classes for details about how to write the pattern strings.

Summary of Message Formatting

We've learned how to use MessageFormat to assemble messages in any language, using a pattern string that describes how to assemble the parts of the message. We've also learned how to control the format of the message parts, and how to vary the message depending on a numerical value. Using these simple techniques, we can prepare a grammatically correct message in any language.
Text Boundary Analysis
Text boundary analysis is the process of locating linguistic boundaries while formatting and processing text. Examples of this process include:

· Locating appropriate points to word-wrap text to fit within specific margins while displaying or printing.
· Locating the beginning of a word that the user has selected.
· Counting characters, words, sentences, or paragraphs.
· Determining how far to move the text cursor when the user hits an arrow key.
· Making a list of the unique words in a document.
· Capitalizing the first letter of each word.
· Locating a particular unit of the text (For example, finding the third word in the document).
Many of these tasks are straightforward for English text, but are more complicated for text written in other languages. For example:
· Chinese and Japanese are written without spaces between words. This means that we can’t just look for spaces to find word boundaries. In general, we can break a line after any character, with a few exceptions called taboo or kinsoku characters. Some kinsouku characters cannot start a line, and some cannot end a line.
· Thai is also written without spaces between words. However, we must still only break lines on word boundaries. This means that we need some way to find the word boundaries, since we can’t rely on spaces, or other punctuation. This is usually done using a dictionary of Thai words.
· Hindi text is written using complex ligatures, called conjuncts. For text editing, conjuncts are usually treaded as a unit, even though they are represented by multiple characters. To implement cursor movement in Hindi text, we need to be able to identify the groups of characters that comprise a single conjunct.
ICU BreakIterator Classes

The ICU BreakIterator classes simplify all of these tasks. They maintain a position between two characters in the text. This position is always a valid text boundary. We can move to the previous or the next boundary, we can ask if a given position in the text is on a valid boundary, or we can ask for the boundary that is before or after a given position in the text.

The ICU BreakIterator classes implement four different types of text boundaries: character boundaries, word boundaries, line break boundaries and sentence boundaries. Line break boundaries are implemented according to Unicode Standard Annex 14. Character, word and sentence boundaries are implemented according to Unicode Standard Annex 29.
Character Boundaries
One or more Unicode characters may make up what a user of our application thinks of as a single character, or as a basic unit of a writing system or language. These basic units are called “grapheme clusters.” For example, the character Ä can be represented as a single Unicode code point (U+00C4) or as two code points, A (U+0041) followed by umlaut (U+0308), but in either case, a user will think of it as a single character. We can use a character boundary iterator to find grapheme cluster boundaries for tasks like counting characters in a document, selection, cursor movement, and backspacing.
Word Boundaries

We can use a word boundary iterator for tasks like word counting, double-click selection, moving the cursor to the next word, and “find whole words only” searching. There will also be word boundaries around punctuation characters, so for some of these tasks we will need to do a little extra processing to ignore boundaries that aren’t after words.
We can also use a word boundary iterator to find word boundaries in Thai text. The word boundary iterator uses a dictionary of Thai words to identify words in the text. This does not produce perfect results in some cases. For example, consider the English phrase “human events.” Written without spaces, this is “humanevents.” Using a dictionary of English words, we could also break the words as “humane vents.” (In fact, the word boundary iterator would break the text this way because the first word is longer.)
Line Break Boundaries

We can use a line break iterator to find all of the places where it is legal to break a line. Line break locations are related to word boundaries, but are different. For example “quasi-stellar” is a single word, but we can break the line after the hyphen.
Sentence Boundaries

We can use a sentence break iterator for things like sentence counting, triple-click selection, and testing to see if two words occur in the same sentence for applications such as database queries. In some cases, it is difficult for sentence break iterators to identify sentence boundaries correctly. For example, consider the following, which contains two sentences:
He said “Are you going?” John shook his head.

However, this contains one sentence:

“Are you going?” John asked.
It is not possible to distinguish these cases without doing a semantic analysis, which the break iterator classes do not currently implement.
Using BreakIterators

First, let’s look some general information about BreakIterators. The iterator always points to a boundary position between two characters. The numerical value of this boundary is the zero-based index of the character following the boundary. So a boundary position of zero represents the boundary just before the first character in the text, and a boundary position of one represents the boundary position between the first and second character in the text, and so on. We can use the current() method to get the iterator’s current position.

The first() and last() methods reset the iterator’s current position to be the beginning or end of the text, respectively, and return that boundary position. The beginning and end of the text are always valid boundaries. The next() and previous() methods move the iterator to the next or previous boundaries, respectively. If the iterator is already at the end of the text, next() will return DONE. If the iterator is at the start of the text, previous() will return DONE.
If we want to know if a particular location in the text is a boundary, we can use the isBoundary() method. We can use the preceding() and following() methods to find the closest break location before or after a given location in the text. (Even if the given location is a boundary.) If the given location is not within the text, these methods will return DONE, and reset the iterator to the beginning or end of the text.

Now, let’s look at some examples of how to use break iterators in C++. The first thing we need to do is to create an iterator. We do this using the factory methods on the BreakIterator class:

Locale locale = …; // locale to use for break iterators

UErrorCode status = U_ZERO_ERROR;

BreakIterator *characterIterator =

 BreakIterator::createCharacterInstance(locale, status);
BreakIterator *wordIterator =
 BreakIterator::createWordInstance(locale, status);
BreakIterator *lineIterator =
 BreakIterator::createLineInstance(locale, status);
BreakIterator *sentenceIterator =

 BreakIterator::createSentenceInstance(locale, status);
The iterators created by the factory methods don’t have any text associated with them, so the next thing we need to do is set the text that we want to iterate over:

UnicodeString text;

readFile(file, text);

 wordIterator->setText(text);
(Where readFile is a function that will read the contents of a file into a UnicodeString.)

 Because creating the iterator and setting the text are two separate steps, we can reuse the iterator by resetting the text. For example, if we’re going to read a bunch of files, we can create the iterator once and reset the text for each file.
Let’s look at what we have to do to use our iterator to count the words in a file. A word will be all of the text between two consecutive word break locations. We’ll also get word break locations before and after punctuation, and we don’t want to count the punctuation as words. An easy way to do this is to look at the text between two word break locations to see if it contains any letters. Here’s the code to count words:

int32_t countWords(BreakIterator *wordIterator, UnicodeString &text)

{

 U_ERROR_CODE status = U_ZERO_ERROR;

 UnicodeString result;

 UnicodeSet letters(UnicodeString("[:letter:]"), status);

 if(U_FAILURE(status)) {

 return -1;

 }

 int32_t wordCount = 0;

 int32_t start = wordIterator->first();
 for(int32_t end = wordIterator->next();

 end != BreakIterator::DONE;

 start = end, end = wordIterator->next())

 {

 text->extractBetween(start, end, result);

 result.toLower();
 if(letters.containsSome(result)) {
 wordCount += 1;

 }

 }

 return wordCount;

}

The variable letters is a UnicodeSet that we initialize to contain all Unicode characters that are letters. The variable start holds the location of the beginning of our potential word, and the variable end holds the location of the end of the word. We check the potential words by asking letters if it contains any of the characters in the word. If it does, we’ve got a word, so we increment our word count.
Notice that there’s nothing specific to word breaks in the above code, other than some variable names. We could use the same code to count characters by substituting a character break iterator, like the one called characterIterator that we created above, for the word break iterator.

Here’s some code that we can use to break lines while displaying or printing text:

int32_t previousBreak(BreakIterator *breakIterator, UnicodeString &text,

 int32_t location)

{

 while(location < text.length()) {

 UChar c = text[location];

 if(!u_isWhitespace(c) && !u_iscntrl(c)) {
 break;

 }
 location += 1;

 }

 return breakIterator->previous(location + 1);

}

The parameter location is the position of the first character that won’t fit on the line, and text is the text that the iterator is using. First we skip over any white space or control characters since they can hang in the margin. Then all we have to do is use the iterator to find the line break position, using the previous() method. We pass in location + 1 so that if location is already a valid line break location, previous() will return it as the line break.
Summary of BreakIterators

It is very difficult to implement text boundary analysis correctly for text in any language. We’ve seen that using the ICU BreakIterator classes, we can easily find boundaries in any text.
References

ICU: http://oss.software.ibm.com/icu
Unicode Standard Annex #14: http://www.unicode.org/reports/tr14
Unicode Standard Annex #29: http://www.unicode.org/reports/tr29
Appendix 1: UCount.java
UCount is a little Java application that reads in a text file in any encoding and prints a sorted list of all of the words in the file. This demonstrates code page conversion, collation, text boundary analysis and messaging formatting.

/*

 **
 * Copyright (C) 2002-2004, International Business Machines Corporation and *

 * others. All Rights Reserved. *

 **
 */

package com.ibm.icu.dev.demo.count;

import com.ibm.icu.dev.tool.UOption;

import com.ibm.icu.text.BreakIterator;

import com.ibm.icu.text.CollationKey;

import com.ibm.icu.text.Collator;

import com.ibm.icu.text.MessageFormat;

import com.ibm.icu.text.RuleBasedBreakIterator;

import com.ibm.icu.text.UnicodeSet;

import com.ibm.icu.util.ULocale;

import com.ibm.icu.util.UResourceBundle;

import java.io.*;

import java.util.Iterator;

import java.util.TreeMap;

public final class UCount

{

 static final class WordRef

 {

 private String value;

 private int refCount;

 public WordRef(String theValue)

 {

 value = theValue;

 refCount = 1;

 }

 public final String getValue()

 {

 return value;

 }

 public final int getRefCount()

 {

 return refCount;

 }

 public final void incrementRefCount()

 {

 refCount += 1;

 }

 }

 /**

 * These must be kept in sync with options below.

 */

 private static final int HELP1 = 0;

 private static final int HELP2 = 1;

 private static final int ENCODING = 2;

 private static final int LOCALE = 3;

 private static final UOption[] options = new UOption[] {

 UOption.HELP_H(),

 UOption.HELP_QUESTION_MARK(),

 UOption.ENCODING(),

 UOption.create("locale", 'l', UOption.OPTIONAL_ARG),

 };

 private static final int BUFFER_SIZE = 1024;

 private static UnicodeSet letters = new UnicodeSet("[:letter:]");
 private static UResourceBundle resourceBundle =

 UResourceBundle.getBundleInstance("com/ibm/icu/dev/demo/count",

 ULocale.getDefault());

 private static MessageFormat visitorFormat =
 new MessageFormat(resourceBundle.getString("references"));
 private static MessageFormat totalFormat =
 new MessageFormat(resourceBundle.getString("totals"));
 private ULocale locale;

 private String encoding;

 private Collator collator;

 public UCount(String localeName, String encodingName)

 {

 if (localeName == null) {

 locale = ULocale.getDefault();

 } else {

 locale = new ULocale(localeName);

 }

 collator = Collator.getInstance(locale);

 encoding = encodingName;

 }

 private static void usage()

 {

 System.out.println(resourceBundle.getString("usage"));

 System.exit(-1);

 }

 private String readFile(String filename)

 throws FileNotFoundException, UnsupportedEncodingException,

 IOException

 {

 FileInputStream file = new FileInputStream(filename);

 InputStreamReader in;

 if (encoding != null) {

 in = new InputStreamReader(file, encoding);

 } else {

 in = new InputStreamReader(file);

 }

 StringBuffer result = new StringBuffer();

 char buffer[] = new char[BUFFER_SIZE];

 int count;

 while((count = in.read(buffer, 0, BUFFER_SIZE)) > 0) {

 result.append(buffer, 0, count);

 }

 return result.toString();

 }

 private static void exceptionError(Exception e)

 {

 MessageFormat fmt =
 new MessageFormat(resourceBundle.getString("ioError"));
 Object args[] = {e.toString()};

 System.err.println(fmt.format(args));

 }

 public void countWords(String filePath)

 {

 String text;

 int nameStart = filePath.lastIndexOf(File.separator) + 1;

 String filename =
 nameStart >= 0? filePath.substring(nameStart): filePath;

 try {

 text = readFile(filePath);

 } catch (Exception e) {

 exceptionError(e);

 return;

 }

 TreeMap map = new TreeMap();

 BreakIterator bi = BreakIterator.getWordInstance(locale.toLocale());

 bi.setText(text);

 int start = bi.first();

 int wordCount = 0;

 for (int end = bi.next();

 end != BreakIterator.DONE;

 start = end, end = bi.next())

 {

 String word = text.substring(start, end).toLowerCase();

 // Only count a word if it contains at least one letter.

 if (letters.containsSome(word)) {

 CollationKey key = collator.getCollationKey(word);

 WordRef ref = (WordRef) map.get(key);

 if (ref == null) {

 map.put(key, new WordRef(word));

 wordCount += 1;

 } else {

 ref.incrementRefCount();

 }

 }

 }

 Object args[] = {filename, new Long(wordCount)};

 System.out.println(totalFormat.format(args));

 for(Iterator it = map.values().iterator(); it.hasNext();) {

 WordRef ref = (WordRef) it.next();

 Object vArgs[] = {ref.getValue(), new Long(ref.getRefCount())};

 String msg = visitorFormat.format(vArgs);

 System.out.println(msg);

 }

 }

 public static void main(String[] args)

 {

 int remainingArgc = 0;

 String encoding = null;

 String locale = null;

 try {

 remainingArgc = UOption.parseArgs(args, options);

 }catch (Exception e){

 exceptionError(e);

 usage();

 }

 if(args.length==0 || options[HELP1].doesOccur ||

 options[HELP2].doesOccur) {

 usage();

 }

 if(remainingArgc==0){

 System.err.println(resourceBundle.getString("noFileNames"));

 usage();

 }

 if (options[ENCODING].doesOccur) {

 encoding = options[ENCODING].value;

 }

 if (options[LOCALE].doesOccur) {

 locale = options[LOCALE].value;

 }

 UCount ucount = new UCount(locale, encoding);

 for(int i = 0; i < remainingArgc; i += 1) {

 ucount.countWords(args[i]);

 }

 }

}
Appendix 2: ucount.cpp
Here is the same program in C++:

/*

 **
 * Copyright (C) 2004, International Business Machines Corporation and *

 * others. All Rights Reserved. *

 **
*/

#include "unicode/utypes.h"

#include "unicode/coll.h"

#include "unicode/sortkey.h"

#include "unicode/ustring.h"

#include "unicode/rbbi.h"

#include "unicode/ustdio.h"

#include "unicode/uniset.h"

#include "unicode/resbund.h"

#include "unicode/msgfmt.h"

#include "unicode/fmtable.h"

#include "uoptions.h"

#include <map>

#include <string>

using namespace std;

static const int BUFFER_SIZE = 1024;

static ResourceBundle *resourceBundle = NULL;

static UFILE *out = NULL;

static UnicodeString msg;

static UConverter *conv = NULL;

static Collator *coll = NULL;

static BreakIterator *boundary = NULL;

static MessageFormat *totalFormat = NULL;

static MessageFormat *visitorFormat = NULL;

enum

{

 HELP1,

 HELP2,

 ENCODING,

 LOCALE

};

static UOption options[]={

 UOPTION_HELP_H, /* 0 Numbers for those who*/

 UOPTION_HELP_QUESTION_MARK, /* 1 can't count. */

 UOPTION_ENCODING, /* 2 */

 UOPTION_DEF("locale", 'l', UOPT_OPTIONAL_ARG)

 /* weiv can't count :))))) */

};

class WordRef

{

private:

 UnicodeString value;

 int refCount;

public:

 WordRef(const UnicodeString &theValue)

 {

 value = theValue;

 refCount = 1;

 }

 const UnicodeString &getValue() const

 {

 return value;

 }

 int getRefCount() const

 {

 return refCount;

 }

 void incrementRefCount()

 {

 refCount += 1;

 }

};

class CollationKeyLess

 : public std::binary_function<const CollationKey&, const CollationKey&, bool>

{

public:

 bool operator () (const CollationKey &str1,

 const CollationKey &str2) const

 {

 return str1.compareTo(str2) < 0;

 }

};

typedef map<CollationKey, WordRef, CollationKeyLess> WordRefMap;

typedef pair<CollationKey, WordRef> mapElement;

static void usage(UErrorCode &status)

{

 msg = resourceBundle->getStringEx("usage", status);

 u_fprintf(out, "%S\n", msg.getTerminatedBuffer());

 exit(-1);

}

static int readFile(UnicodeString &text, const char* filePath, UErrorCode &status)

{

 int32_t count;

 char inBuf[BUFFER_SIZE];

 const char *source;

 const char *sourceLimit;

 UChar uBuf[BUFFER_SIZE];

 UChar *target;

 UChar *targetLimit;

 int32_t uBufSize = BUFFER_SIZE;

 FILE *f = fopen(filePath, "rb");

 // grab another buffer's worth

 while((!feof(f)) &&

 ((count=fread(inBuf, 1, BUFFER_SIZE , f)) > 0))

 {

 // Convert bytes to unicode

 source = inBuf;

 sourceLimit = inBuf + count;

 do

 {

 target = uBuf;

 targetLimit = uBuf + uBufSize;

 ucnv_toUnicode(conv, &target, targetLimit,

 &source, sourceLimit, NULL,

 feof(f)?TRUE:FALSE, /* pass 'flush' when eof */

 /* is true (when no more */

 /* data will come) */

 &status);

 if(status == U_BUFFER_OVERFLOW_ERROR)

 {

 // simply ran out of space - we'll reset the target ptr the
 // next time through the loop.

 status = U_ZERO_ERROR;

 }

 else

 {

 // Check other errors here.

 if(U_FAILURE(status)) {

 fclose(f);

 return -1;

 }

 }

 text.append(uBuf, target-uBuf);

 count += target-uBuf;

 } while (source < sourceLimit); // while simply out of space

 }

 fclose(f);

 return count;

}

static void countWords(const char *filePath, UErrorCode &status)

{

 UnicodeString text;

 const char *fileName = strrchr(filePath, U_FILE_SEP_CHAR);

 fileName = fileName != NULL ? fileName+1 : filePath;

 int fileLen = readFile(text, filePath, status);

 int32_t wordCount = 0;

 UnicodeSet letters(UnicodeString("[:letter:]"), status);

 boundary->setText(text);

 WordRefMap myMap;

 WordRefMap::iterator mapIt;

 CollationKey cKey;

 UnicodeString result;

 int32_t start = boundary->first();

 for (int32_t end = boundary->next();

 end != BreakIterator::DONE;

 start = end, end = boundary->next())

 {

 text.extractBetween(start, end, result);

 result.toLower();

 if (letters.containsSome(result)) {

 coll->getCollationKey(result, cKey, status);

 mapIt = myMap.find(cKey);

 if(mapIt == myMap.end()) {

 WordRef wr(result);

 myMap.insert(mapElement(cKey, wr));

 wordCount += 1;

 } else {

 mapIt->second.incrementRefCount();

 }

 }

 }

 Formattable args[] = {fileName, wordCount};

 FieldPosition fPos = 0;

 result.remove();

 totalFormat->format(args, 2, result, fPos, status);

 u_fprintf(out, "%S\n", result.getTerminatedBuffer());

 WordRefMap::const_iterator it2;

 for(it2 = myMap.begin(); it2 != myMap.end(); it2++) {

 Formattable vArgs[] = {
 it2->second.getValue(), it2->second.getRefCount() };
 fPos = 0;

 result.remove();

 visitorFormat->format(vArgs, 2, result, fPos, status);

 u_fprintf(out, "%S\n", result.getTerminatedBuffer());

 }

}

int main(int argc, char* argv[])

{

 U_MAIN_INIT_ARGS(argc, argv);

 UErrorCode status = U_ZERO_ERROR;

 const char* encoding = NULL;

 const char* locale = NULL;

 out = u_finit(stdout, NULL, NULL);

 const char* dataDir = u_getDataDirectory();
 // zero terminator, dot and path separator

 char *newDataDir = (char *)malloc(strlen(dataDir) + 2 + 1);
 newDataDir[0] = '.';

 newDataDir[1] = U_PATH_SEP_CHAR;

 strcpy(newDataDir+2, dataDir);

 u_setDataDirectory(newDataDir);

 free(newDataDir);

 resourceBundle = new ResourceBundle("ucount", NULL, status);

 if(U_FAILURE(status)) {

 u_fprintf(out, "Unable to open data. Error %s\n", u_errorName(status));

 return(-1);

 }

 argc=u_parseArgs(argc, argv,
 sizeof(options)/sizeof(options[0]), options);

 if(argc < 0) {

 usage(status);

 }

 if(options[HELP1].doesOccur || options[HELP2].doesOccur) {

 usage(status);

 }

 if(argc == 1){

 msg = resourceBundle->getStringEx("noFileNames", status);

 u_fprintf(out, "%S\n", msg.getTerminatedBuffer());

 usage(status);

 }

 if (options[ENCODING].doesOccur) {

 encoding = options[ENCODING].value;

 }

 conv = ucnv_open(encoding, &status);

 if (options[LOCALE].doesOccur) {

 locale = options[LOCALE].value;

 }

 coll = Collator::createInstance(locale, status);

 boundary = BreakIterator::createWordInstance(locale, status);

 if(U_FAILURE(status)) {

 u_fprintf(out, "Runtime error %s\n", u_errorName(status));

 return(-1);

 }

 totalFormat =
 new MessageFormat(resourceBundle->getStringEx("totals", status),

 status);
 visitorFormat =
 new MessageFormat(resourceBundle->getStringEx("references", status),

 status);

 int i = 0;

 for(int i = 1; i < argc; i += 1) {

 countWords(argv[i], status);

 }

 u_fclose(out);

 ucnv_close(conv);

 delete totalFormat;

 delete visitorFormat;

 delete resourceBundle;

 delete coll;

 delete boundary;

}

Appendix 3: root.txt
Here is the source file used to build the resource file for UCount.java and ucount.cpp:

root

{

 usage {

 "\nUsage: UCount [OPTIONS] [FILES]\n\n"

 "This program will read in a text file in any encoding, print a \n"
 "sorted list of the words it contains and the number of times \n"
 "each is used in the file.\n"

 "Options:\n"

 "-e or --encoding specify the file encoding\n"

 "-h or -? or --help print this usage text.\n"

 "-l or --locale specify the locale to be used for sorting and finding words.\n"

 "example: com.ibm.icu.dev.demo.count.UCount -l en_US -e UTF8 myTextFile.txt"

 }

 totals {"The file {0} contains {1, choice, 0# no words|1#one word|1<{1, number, integer} words}:"} // 0: filename, 1: word count

 references {"{0}: {1, choice, 0#never|1#once|2#twice|2<{1, number, integer} times}"} // 0: word, 1: reference count

 noFileNames {"Error: no file names were specified."}

 ioError {"Error: {0}"} // 0: error string.

}

26th Internationalization and Unicode Conference
22
San Jose, CA, September 2004

