Getting Started With ICU – Part I

Getting Started With ICU Part I
Introduction
The ICU library is a very powerful tool for solving globalization tasks. This paper provides reader with instructions for obtaining and setting up both ICU4J and ICU4C libraries.
Several important frameworks of ICU are also introduced: conversion, collation, message format and break iteration. Usage examples are given for each framework. In the interest of text complexity and size, each framework is represented in one library – conversion in ICU4C (there is no ICU4J conversion engine), collation and message formatting in ICU4J and break iteration again in ICU4C.

However, all four frameworks are used in an example – locale aware and Unicode enable word count program – UCount. This example is provided in both C++ and Java.

Using the Conversion Engine in ICU4C
The first task is converting a body of text encoded using a known code page to Unicode and converting it back to the code page text.

Getting ICU4C
There are several ways to get ICU. First of all, you want to visit http://oss.software.ibm.com/icu/. On the download page you can find all the ICU releases. The safest bet is to use the latest release.
ICU versions are numbered with two digits, such as 2.8 or 3.0. Most of the releases are major (“reference”) releases. Round numbers do not mean that a release is more significant than the others (in other words, amount of changes for 2.8 is probably about the same as the amount of changes for 3.0). Some of the reference releases have maintenance releases (such as 2.6.2).

If your platform is listed on the binary download list, it will probably be the easiest to pick a binary package. This option gives you a ready to use ICU library.

You might also want to try the source package. Having a source package allows you to change build options, build only the parts of ICU that you really need, choose the data packaging options, etc. Readme.html file is a good resource to find out different modes of building.
We also provide a CVS access to our library. All the releases are tagged with ‘release-x-y’ tag. So, if you want ICU 3.0, you can check out release-3-0 tag. CVS HEAD is not guaranteed to be stable.
Setting up ICU4C

Once you have downloaded ICU, you need to set it up. Binary download needs only unpacking. Source download requires you to build the library.

For Windows, we provide solution and project files for MSVC .Net 2003. In most cases, building the library is as simple as starting the build. Older versions of ICU provide workspace and project files for MSVC 6.
If you use one of the UNIX platforms, you need to configure ICU. Source distribution provides the configure script, which will probe your system and create Makefiles. There is a front end to configuration script, which is invoked by the runConfigureICU command. Reading readme.html is almost certainly required. Once the configuration is over, you can build the library by invoking make. There are several useful additional commands for make: make install will install ICU in the specified place and make check will also build and run the test suite.

Generally, it is always a good idea to run the test suite, in order to make sure that the library is properly built. Test suite consists of three programs: cintltst which runs the C APIs test, intltest which mostly tests C++ APIs and iotest which tests our input/output library. If all of these programs run fine, ICU is ready to be used.

ICU4C consists of several libraries. The core library is common. It provides all the services and frameworks that are required for the higher level services. Common library provides the configuration settings, basic types, locale conversion, resource management, service registration, normalization, character properties, code page conversion and other core services. Your projects will at least have to use the common library. The second library is i18n. It provides higher level frameworks and services, such as collation, transformation, formatting, etc. Also worth noting is the io library which provides POSIX like services. You will need to use it if you require globalized input/output services for your project.

In order to use ICU in your projects, you need to tell the compiler where to find the include files and tell linker where to find the libraries to link against.
MSVC .Net environment requires you to create a new project. You need to add the location of ICU include files to the include path for the project. Also, the ICU libraries need to be added to the linker settings for the project.
If your project is being developed on UNIX, you will probably have makefiles to do the work for you. Again, you will need to add ICU include directory to the include path and ICU libraries to the libraries used in linking.

In order to make sure that your project settings are in place, you can try to compile and link a simple program such as this one:

#include <stdio.h>

#include "unicode/utypes.h"

#include "unicode/ures.h"

main() {

 UErrorCode status = U_ZERO_ERROR;

 UResourceBundle *res = ures_open(NULL, "", &status);

 if(U_SUCCESS(status)) {

 printf("everything is OK\n");

 } else {

 printf("there error %s while trying to open a root resource\n", u_errorName(status));

 }

 ures_close(res);

}

If you manage to get the program to print “everything is OK”, ICU has been set up properly and you can write your programs using ICU.
Converting text
One of the more popular uses for ICU is text conversion. One of the reasons for this is that ICU provides probably the most complete set of conversion tables. Also, a lot of work has been done on the proper identification of the various codepages and establishing an alias system. Therefore, if you need to convert text from one codepage to Unicode or to another codepage, chances are that ICU will be best for the task.

In order to do conversion, a converter needs to be opened. ICU is based on the open/use/close paradigm. This means that in order to use a service, a service object needs to be opened and kept around as long as the services are required. One of the benefits of such an approach is that a service object can provide best performance in subsequent uses. Therefore, it is wise to plan your programs in such a way that you reuse service objects.

The API to open the conversion engine is UConverter *ucnv_open(const char * converterName, UErrorCode * status).

In ICU4C most of the APIs use the UErrorCode variable to return the status of the operation. If any errors occur during the API execution, this variable will be set to the error condition. After API returns, it is usually wise to check the contents of the status variable using U_SUCCESS or U_FAILURE macros.
So a nice way to open a converter would be the following piece of code:

UErrorCode status = U_ZERO_ERROR;

UConverter *cnv = ucnv_open(encoding, &status);

if(U_FAILURE(status)) {

/* process the error situation, die gracefully */

}

Once opened, the converter can be used.
The encoding parameter has a ‘magic’ property. If you pass in NULL instead of an encoding name, you will get a default converter – whatever converter ICU thinks is the default on the host system.

If you need to use a particular converter, you should specify the encoding argument. ICU will use its alias table in order to provide you with the best match for the specified encoding name. However, if no matches are found, you will get an error.
Sometimes, it is useful to know which converters are supported by the installed ICU library. First, you need to find out how many converters are installed. This can be done by using the ucnv_countAvailable() API. Next, you can get the name of each converter in list, using ucnv_getAvailable API.

There are several other ways to open a converter. For more details, take a look at the ICU Users Guide and API reference.
Doing Useful Things with a Converter
There are various ways to convert text. The simplest scenario is to have a complete chunk of data that needs to be converted to or from Unicode. In that case, you only need to specify the buffer to hold the result and call the conversion API.

In order to know the required size of the buffer, one can use several approaches. The first one is to estimate. If you are converting a single byte code page and Unicode, the receiving buffer size should be at least as big as the source data. However, you might not know enough about the encoding. In that case, you can use the API to find out how much space you really need.
Typical usage would look a bit like this (in case we are converting from Unicode).

char buffer[DEFAULT_BUFFER_SIZE];

char *bufP = buffer;

len = ucnv_fromUChars(cnv, bufP, DEFAULT_BUFFER_SIZE,

source, sourceLen, &status);

if(U_FAILURE(status)) {

if(status == U_BUFFER_OVERFLOW_ERROR) {

status = U_ZERO_ERROR;

bufP = (UChar *)malloc((len + 1) * sizeof(char));

len = ucnv_fromUChars(cnv, bufP, DEFAULT_BUFFER_SIZE,

source, sourceLen, &status);

} else {

/* other error, die gracefully */

}

}

/* do interesting stuff with the converted text */

Another conversion API allows you to convert one character from source encoding to Unicode. This API is useful for encapsulating converter function in a character iterator for example.
UChar32 result;

char *source = start;

char *sourceLimit = start + len;

while(source < sourceLimit) {

result = ucnv_getNextUChar(cnv, &source, sourceLimit, &status);

if(U_FAILURE(status)) {

/* die gracefully */

}

/* do interesting stuff with the converted text */

}

There is no API to convert a single code point from Unicode to a codepage.

Another interesting thing in this example is that converter usage modifies the pointer to the source text. So, you need to preserve the original pointer if you are going to need it later. During this conversion, converter internal state will be changed and the next call to this API will be affected by the internal state.
Another interesting situation is reading a file. In that case, you don’t know in advance how long the file is going to be. Also, allocating a huge buffer to hold the whole source file is usually not a good idea. ICU conversion engine provides a way to convert data that comes in pieces. The sample program for this paper illustrates reading and converting a file:
while((!feof(f)) && ((count=fread(inBuf, 1, BUFFER_SIZE , f)) > 0)) {

 // Convert bytes to unicode

 source = inBuf;

 sourceLimit = inBuf + count;

 do {

 target = uBuf;

 targetLimit = uBuf + uBufSize;

 ucnv_toUnicode(conv, &target, targetLimit,

 &source, sourceLimit, NULL,

 feof(f)?TRUE:FALSE, /* pass 'flush' when eof */

 /* is true (when no more data will come) */

 &status);

 if(status == U_BUFFER_OVERFLOW_ERROR) {

 // simply ran out of space – we'll reset the
 // target ptr the next time through the loop.

 status = U_ZERO_ERROR;

 } else {

 // Check other errors here.

 if(U_FAILURE(status)) {

 fclose(f);

 return -1;

 }

 }

 text.append(uBuf, target-uBuf);

 count += target-uBuf;

 } while (source < sourceLimit); // while simply out of space

 }
The core of this loop is the ucnv_toUnicode API. It takes a piece of text and converts it to Unicode. However, it’s ‘flush’ argument allows us to specify that more text will arrive. So, if the encoding that we are dealing with depends on the previously converted characters, converter retains state, thus resulting in a correct conversion.
From the example above, it is visible that the API modifies both the source and the target pointers. Also, ucnv_toUnicode can be mixed with ucnv_getNextUChar if required.
Cleaning up

After using a converter, you need to clean up. Otherwise, you’ll produce a memory leak. Converters are easily disposed of:

ucnv_close(cnv);

This API releases the converter and all the associated data structures.

Using collation in ICU4J
Getting & Setting up ICU4J
If you want to use ICU4J, the best solution is to download a .jar off ICU4J’s website. You can access different ICU4J versions by going to http://oss.software.ibm.com/icu4j/download/. You can drop this file in your class path or you can explicitly mention it when starting your applications. In most cases, you’ll want to use the latest available release.

If, however, you would like to modify ICU4J, or to have access to the latest code, you need to use CVS. ICU4J is hosted in CVS, similarly to ICU4C. Integrated Development Environment Eclipse works very nice with CVS and is used by a lot of ICU4J developers. Eclipse will allow you to easily check out ICU4J and set up the environment. Detailed instructions can be found at http://oss.software.ibm.com/icu/docs/eclipse_howto/eclipse_howto.html.
If you do not wish to use Eclipse, you can compile and run ICU using JDK and Ant.

Make sure that you check which JDK version is required for the ICU4J version that you need to use. While we are trying to maintain compatibility with the widest range of JDKs available, we do sometimes need to stop supporting older versions of JDK. The latest ICU4J version (3.0) requires JDK 1.4 or later. Once you have the source distribution, JDK and Ant, you can build ICU4J by simply typing ant at the command line.
In order to test your downloaded version of ICU4J, you can try compiling and running the following code:

import com.ibm.icu.util.ULocale;

import com.ibm.icu.util.UResourceBundle;

public class TestICU {

public static void main(String[] args) {

 UResourceBundle resourceBundle =

UResourceBundle.getBundleInstance(null,

ULocale.getDefault());

}

}
No exceptions means that ICU4J is ready to use. Note that the program above works with ICU4J 3.0 and later.
Using Collators

Collators are used to compare strings. Globalized applications need to compare strings in linguistic sensitive way.

Collation engine in ICU4J is a port of UCA compliant collation engine implemented in ICU4C. However, ICU4J’s collation tries to follow closely JDK’s collation API set, in order to allow for drop-in replacement. Data changes and bug fixes are ported from ICU4C every release.

In order to use a collator, we need to instantiate it.

Here is an example:

ULocale locale = new ULocale("fr");

Collator coll = Collator.getInstance(locale);

// do useful things with the collator

Collator lives in the com.ibm.icu.text.Collator class.

After the factory returns, collator is ready to use.
Comparing strings in linguistic sensitive way is much more complicated than simple binary comparison. Depending on your needs, there are two main ways to use the engine – direct string comparison and sort key calculation.
String Comparison

String comparison takes two strings and returns the relation of those strings according to the collator. The strings will be either equal or one string will be greater than the other. This function closely resembles the binary comparison function.

ICU4J version looks like this:

int compare(String source, String target);

You want to use the compare function in cases where you will not be comparing the same strings many times. The advantage of this API is that you will get the result as soon as possible - if two strings are different on the first symbol, the comparison will take much less time than if they differ in case of the last symbol.
You will typically use the comparison API in situations like this:

ucnv_close(cnv);

\
Sort Keys

In situations when you can anticipate that many comparison operations using the same strings are going to take place, you will be better off by using sort keys. A sort key is a binary representation of a string that can be used for binary comparison with other sort keys. The result of such comparison will be identical as if compare function was used.
Sort key is basically a zero terminated array of unsigned bytes. Therefore, you can store them the same way as you would store any byte array. It is not uncommon to use sort keys as values in index fields.

Sort keys can only be compared with the sort keys generated by a collator that has the same locale and the same settings as the original collator. Comparing sort keys from functionally different collators doesn’t make sense.

ICU4J provides two ways to use sort keys. One way is to use the encapsulation class CollationKey. This class holds the binary sort key. If you need to compare two CollationKeys, you can use the compareTo method. This class also preserves the original string. If you need the get the sort key contents, you can use the toByteArray method.

The other encapsulation class is RawCollationKey. You can get an instance of this class by using getRawCollationKey API. This class is mutable and reusable and it might be better suited for usage.
In the sample program, we are using CollationKey class as a key for a TreeMap. Similarly, in the C++ example, class CollationKey is used as a key for the map STL data structure.
Conclusion

PAGE
6
26th Internationalization and Unicode Conference

San Jose, September 2004

